2020-10-28
Python培訓(xùn)
好程序員Python培訓(xùn)分享Python生成器與迭代器,Python生成器與迭代器對于喜歡Python開發(fā)的小伙伴們來說應(yīng)該是不陌生的,不了解的小伙伴也沒有關(guān)系,本篇文章好程序員Python培訓(xùn)小編就給小伙伴們詳解一下Python生成器與迭代器,感興趣的小伙伴就隨小編來了解一下吧。
列表生成式:
例一:
a = [i+1 for i in range(10)]
print(a)
輸出:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
例二:
L = [1, 2, 3, 4, 5]
print([i*i for i in L if i>3])
輸出:
[16, 25]
例三:
L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
print([i*a for i in L for a in I if i > 2 if a < 8])
輸出:
[18, 21, 24, 28, 30, 35]
生成器:
通過列表生成式,我們可以直接創(chuàng)建一個(gè)列表。但是,受到內(nèi)存限制,列表容量肯定是有限的。而且,創(chuàng)建一個(gè)包含100萬個(gè)元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個(gè)元素,那后面絕大多數(shù)元素占用的空間都白白浪費(fèi)了。
所以,如果列表元素可以按照某種算法推算出來,這樣就不必創(chuàng)建完整的list,從而節(jié)省大量的空間。在Python中,這種一邊循環(huán)一邊計(jì)算的機(jī)制,稱為生成器:generator。
要?jiǎng)?chuàng)建一個(gè)generator,有很多種方法。diyi種方法很簡單,只要把一個(gè)列表生成式的[]改成(),就創(chuàng)建了一個(gè)generator:
示例:
L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(g)
輸出:
<generator object <genexpr> at 0x00000276586C1F48>
創(chuàng)建L和g的區(qū)別僅在于最外層的[]和(),L是一個(gè)list,而g是一個(gè)generator。
我們可以直接打印出list的每一個(gè)元素,可以通過generator的next()方法
next(g)
例一:
L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(next(g))
print(next(g))
print(next(g))
輸出:
6
7
8
例二:
L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I if i > 2 if a < 8)
print(next(g))
print(next(g))
print(next(g))
輸出:
18
21
24
因?yàn)?/font>generator保存的是算法,每次調(diào)用next(g)就計(jì)算出g的下一個(gè)元素的值,直到計(jì)算到最后一個(gè)元素,沒有更多的元素時(shí),拋出StopIteration的錯(cuò)誤。正確的方法是使用for循環(huán),因?yàn)?/font>generator也是可迭代對象:
例三:
g = (i*i for i in range(0, 5))
for i in g:
print(i)
當(dāng)我們創(chuàng)建了一個(gè)generator后,基本上永遠(yuǎn)不會調(diào)用next()方法,而是通過for循環(huán)來迭代它。
generator非常強(qiáng)大。如果推算的算法比較復(fù)雜,用類似列表生成式的for循環(huán)無法實(shí)現(xiàn)的時(shí)候,還可以用函數(shù)來實(shí)現(xiàn)。
比如,著名的斐波拉契數(shù)列(Fibonacci),除diyi個(gè)和第二個(gè)數(shù)外,任意一個(gè)數(shù)都可由前兩個(gè)數(shù)相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契數(shù)列用列表生成式寫不出來,但是,用函數(shù)把它打印出來卻很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
上面的函數(shù)可以輸出斐波那契數(shù)列的前N個(gè)數(shù):
>>> fib(6)
1
1
2
3
5
8
仔細(xì)觀察,可以看出,fib函數(shù)實(shí)際上是定義了斐波拉契數(shù)列的推算規(guī)則,可以從diyi個(gè)元素開始,推算出后續(xù)任意的元素,這種邏輯其實(shí)非常類似generator。
也就是說,上面的函數(shù)和generator僅一步之遙。要把fib函數(shù)變成generator,只需要把print(b)改為yield b就可以了:
def fib(max):
n,a,b = 0,0,1
while n < max:
#print(b)
yield b
a,b = b,a+b
n += 1
return 'done'
這就是定義generator的另一種方法。如果一個(gè)函數(shù)定義中包含yield關(guān)鍵字,那么這個(gè)函數(shù)就不再是一個(gè)普通函數(shù),而是一個(gè)generator:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
print(fib(5))
輸出:
<generator object fib at 0x0000023DC66C1F48>
調(diào)用方法: ##但是用for循環(huán)調(diào)用generator時(shí),\
##發(fā)現(xiàn)拿不到generator的return語句\
##的返回值。如果想要拿到返回值,必須捕獲StopIteration錯(cuò)誤,返回值包含在StopIteration的value中:
for i in fib(5):
print(i)
輸出:
1
1
2
3
5
或者:
date = fib(5)
print(date.__next__())
print(date.__next__())
print(date.__next__())
print('test')
print(date.__next__())
print(date.__next__())
輸出:
1
1
2
test
3
5
send方法有一個(gè)參數(shù),該參數(shù)指定的是上一次被掛起的yield語句的返回值
還可通過yield實(shí)現(xiàn)在單線程的情況下實(shí)現(xiàn)并發(fā)運(yùn)算的效果
#_*_coding:utf-8_*_
__author__ = 'Alex Li'
import time
def consumer(name):
print("%s 準(zhǔn)備吃包子啦!" %name)
while True:
baozi = yield
print("包子[%s]來了,被[%s]吃了!" %(baozi,name))
def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子開始準(zhǔn)備做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2個(gè)包子!")
c.send(i)
c2.send(i)
producer("alex")
通過生成器實(shí)現(xiàn)協(xié)程并行運(yùn)算
迭代器:
可以直接作用于for循環(huán)的數(shù)據(jù)類型有以下幾種:
一類是集合數(shù)據(jù)類型,如list、tuple、dict、set、str等;
一類是generator,包括生成器和帶yield的generator function。
這些可以直接作用于for循環(huán)的對象統(tǒng)稱為可迭代對象:Iterable。
可以使用isinstance()判斷一個(gè)對象是否是Iterable對象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
而生成器不但可以作用于for循環(huán),還可以被next()函數(shù)不斷調(diào)用并返回下一個(gè)值,直到最后拋出StopIteration錯(cuò)誤表示無法繼續(xù)返回下一個(gè)值了。
*可以被next()函數(shù)調(diào)用并不斷返回下一個(gè)值的對象稱為迭代器:Iterator。
可以使用isinstance()判斷一個(gè)對象是否是Iterator對象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator對象,但list、dict、str雖然是Iterable,卻不是Iterator。
把list、dict、str等Iterable變成Iterator可以使用iter()函數(shù):
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
為什么list、dict、str等數(shù)據(jù)類型不是Iterator?
這是因?yàn)?/font>Python的Iterator對象表示的是一個(gè)數(shù)據(jù)流,Iterator對象可以被next()函數(shù)調(diào)用并不斷返回下一個(gè)數(shù)據(jù),直到?jīng)]有數(shù)據(jù)時(shí)拋出StopIteration錯(cuò)誤。可以把這個(gè)數(shù)據(jù)流看做是一個(gè)有序序列,但我們卻不能提前知道序列的長度,只能不斷通過next()函數(shù)實(shí)現(xiàn)按需計(jì)算下一個(gè)數(shù)據(jù),所以Iterator的計(jì)算是惰性的,只有在需要返回下一個(gè)數(shù)據(jù)時(shí)它才會計(jì)算。
Iterator甚至可以表示一個(gè)無限大的數(shù)據(jù)流,例如全體自然數(shù)。而使用list是永遠(yuǎn)不可能存儲全體自然數(shù)的。
小結(jié):
凡是可作用于for循環(huán)的對象都是Iterable類型;
凡是可作用于next()函數(shù)的對象都是Iterator類型,它們表示一個(gè)惰性計(jì)算的序列;
集合數(shù)據(jù)類型如list、dict、str等是Iterable但不是Iterator,不過可以通過iter()函數(shù)獲得一個(gè)Iterator對象。
Python3的for循環(huán)本質(zhì)上就是通過不斷調(diào)用next()函數(shù)實(shí)現(xiàn)的,例如:
for x in [1, 2, 3, 4, 5]:
pass
實(shí)際上完全等價(jià)于:
# 首先獲得Iterator對象:
it = iter([1, 2, 3, 4, 5])
# 循環(huán):
while True:
try:
# 獲得下一個(gè)值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循環(huán)
break
最后想要了解更多關(guān)于Python和人工智能方面內(nèi)容的小伙伴,請關(guān)注好程序員Python培訓(xùn)官網(wǎng)、微信等平臺。
開班時(shí)間:2021-04-12(深圳)
開班盛況開班時(shí)間:2021-05-17(北京)
開班盛況開班時(shí)間:2021-03-22(杭州)
開班盛況開班時(shí)間:2021-04-26(北京)
開班盛況開班時(shí)間:2021-05-10(北京)
開班盛況開班時(shí)間:2021-02-22(北京)
開班盛況開班時(shí)間:2021-07-12(北京)
預(yù)約報(bào)名開班時(shí)間:2020-09-21(上海)
開班盛況開班時(shí)間:2021-07-12(北京)
預(yù)約報(bào)名開班時(shí)間:2019-07-22(北京)
開班盛況
Copyright 2011-2023 北京千鋒互聯(lián)科技有限公司 .All Right
京ICP備12003911號-5
京公網(wǎng)安備 11010802035720號